Research projects
Start of main content
Systemic analysis of the gene regulatory networks involved in the specification and maintenance of the retinal pigment epithelium: towards new therapies for retinal degenerative diseases
18th national competition for scientific and technical research
Rare diseases
Senior Researcher : Paola Bovolenta Nicolao
Research Centre or Institution : Centro de Biología Molecular "Severo Ochoa". CSIC-Universidad Autónoma de Madrid
Abstract
Alterations of the retinal pigment epithelium (RPE) frequently lead to loss of vision. The replacement of RPE cells is therefore a promising therapeutic strategy, although various technical obstacles make it difficult to perform. One of them is the poor knowledge of the gene regulatory networks (GRN) involved in the specification and maintenance of RPE. To fill this conceptual gap, we have used the zebrafish and applied comparative genomic analyzes, RNAseq and ATACseq to non-committed progenitors and cells of the neural retina (NR) and RPE. With this strategy, we have identified clusters of transcription factors, which mark the transcriptional states of RPE and NR over time.
A first group acts very early promoting initial tissue specification. A second supports the acquisition of the main identity of the two tissues. The identification of differentially open chromatin regions between the two tissues supports this differential and stepwise process and further shows that RPE is more transcriptionally active than NR. Our data allow us to propose that the identity of the NR is more easily generated by "restricting" the fate of non-committed progenitors with minor adaptations of the GRN of the morphogenetic field of the eye. In contrast, the acquisition of RPE identity requires more dramatic transcriptomic and epigenomic changes to "modify" cell fate. We also observe that the developmental schedules of NR and RPE are mutually exclusive, with clusters of transcription factors exerting cross-repression. Using CRISPR / Cas9 mutagenesis for selected genes, we have validated some of the identified transcripts and the proposed model. In parallel, we have used a transgenic line that allowed us to identify RPE cells from their inception, demonstrating that the transition of RPE from neuroepithelium to a squamous one is necessary for the morphogenesis of the optic vesicle. The results we have obtained will allow the elaboration of better protocols to obtain RPE cells suitable for therapeutic use.
Scientific Production |
|
---|---|
Magazine Articles | 12 |
Communications at national conferences | - |
Communications at international conferences | 12 |
- Activities related
- Projects related
- News related
- Publications related
-
8
Apr
2024
Panel Discussion Mundo de las prótesis, los nuevos materiales, sus complicaciones y su futuro Madrid , Lunes, 8 de abril 2024. 17.00 horas
-
23
Apr
2024
Session Situación actual de las Enfermedades Raras en España Madrid, Martes, 23 de abril de 2024, 10:00 horas
-
9
May
2024
Conference Genes de mosca y genes humanos: una comparación Madrid, Jueves 09 de mayo de 2024, 19:00 horas
- Molecular basis of immune deficiency in Wolf-Hirschhorn Syndrome (4p-) 2016 Senior Researcher : César Cobaleda Hernández Research Centre or Institution : Centro de Biología Molecular "Severo Ochoa". CSIC-Universidad Autónoma de Madrid
- AGC1 deficiency and calcium signaling in mitochondria: a new disease model for the study of pathogenic mechanisms and for the development of therapeutic strategies 2016 Senior Researcher : Jorgina Satrústegui Gil-Delgado Research Centre or Institution : Centro de Biología Molecular "Severo Ochoa". CSIC-Universidad Autónoma de Madrid
- Novel immunotherapeutic strategies against T-ALL, a rare pediatric disease 2018 Senior Researcher : María Luisa Toribio García Research Centre or Institution : Centro de Biología Molecular "Severo Ochoa". CSIC-Universidad Autónoma de Madrid
End of main content